

The Use of Landsat 8 for Monitoring of Fresh and Coastal Water

Advisor: Dr. John Schott

By Javier A. Concha 07-06-15

Hypothesis

 "The L8 sensor can be utilized to simultaneously quantify the concentration of water constituents (specifically chlorophyll, suspended solids, and colored dissolved organic matter) in fresh and coastal waters."

CDOM fixed = 0.0954 1/m

TSS fixed = 1.4 g/m^3

CDOM=0.0954 CDOM=0.9297 CDOM=1.0025 CDOM=1.0194

Differences in Rrs with low and high Chl-a concentrations

NASA's OCx Models* vs Hydrolight everything fixed but chl-a

NASA's OCx Models* vs Hydrolight nothing fixed

Area of Study

Retrieval

Empirical Line Method (ELM)

$$L(\lambda) = \frac{E_S'(\lambda)cos(\sigma')r(\lambda)\tau_1(\lambda)\tau_2(\lambda)}{\pi} + \frac{E_{ds}(\lambda)r(\lambda)\tau_2(\lambda)}{\pi} + L_{us}(\lambda)$$

$$L = m \times r_d + b$$

Model-based ELM Method Bright Pixel

False color image (red = vegetation)

City Pixels (Bright px)

Model-based ELM Method Dark Pixel

Radiance Landsat 8 image

HydroLight

LUT: HydroLight (con't)

Known Concentrations

Retrieval: RMSE

Water Pixels

LUT

09-29-2014: Chl-a

09-29-2014: TSS

09-29-2014: CDOM

0.4

0.2

8.0

0.6

Ground Truth Collect

Water Samples

Lab Analysis

Water Leaving Reflectance

Backscattering

Lab Measurements

Spectrophotometer

Spectophotometric

Concentrations

Analysis

RIT Ground Truth Collection Summary

		IOPs		Concentrations		Reflectance			
Date		Ponds	Lake	Ponds	Lake	Ponds	Lake	N points	Comments
2013	25-		X		X	X	X		
	Aug					•	•		
	19-					X		4	Clear
	Sep					•			
	26-					X		8	Clouds
	Sep								0.0445
2014	17-		X		X		X		
	May								
	02-	X		X		X			
	Jun			^		^			
	11-Jul	/	/	/	/	/	/	8	Glint
	28-	X	/	X	✓	X	V		
	Aug						X		
	29-	V		/	/	/	•	5	Clear
	Sep							J	Clear
	24-		X		X	X	X		
	Oct		^		^	^	^		

Retrieved vs Measured

Error: RMSE/C_{max}

Future Work

Include a glint correction

Try in a different water body

Validation by comparing with products from ocean color satellites

Integration with Hydrodynamics models

Thanks for listening! Question?

Javier Concha: jxc4005@rit.edu

Motivation

Product not available for medium spatial resolution satellites

Monitoring the Earth's fresh water supply:
 Create a water components product for fresh and coastal water

Empirical Line Method (ELM)

- Two pixels in the scenes with known reflectance
- Linear relationship between radiance
 L and reflectance R
- Conversion pixel by pixel

Atmospheric Correction

- A Model-Based Empirical Line Method (ELM)
 Atmospheric Correction Method
 - Bright pixel :
 - Radiance (Data Spectra): Pseudo Invariant Features (PIF) from L8 image
 - Reflectance (Field Spectra): PIF from Landsat reflectance product (CDR)
 - Dark pixel:
 - Radiance (Data Spectra): water ROI from L8 image
 - Reflectance (Field Spectra): HydroLight (estimated concentration)

Fixed Chl-a different CDOM and TSS

HydroLight

- Case 2: 4-component IOP model
 - 1. Pure Water
 - 2. Chlorophyll-bearing particles
 - 3. CDOM
 - 4. Mineral Particles

Output: Water Leaving Reflectance Curves

Model-based ELM Method Bright and Dark Pixels

Model-based ELM Method

